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Purpose. To investigate the use of adaptive transformations to assess the parameter distributions in
population modeling.
Methods. The logit, box-cox, and heavy tailed transformations were investigated. Each one was used in
conjunction with the standard (exponential) transformation for PK and PD parameters. The shape
parameters of these transformations were estimated to allow the parameter distributions to more
accurately resemble a wider range of parameter distributions. The transformations were tested both in
simulated settings where the true distributions were known and in 30 models developed from real data.
Results. In the simulated setting the transformations were better than the standard lognormal distribution
at characterizing the true distributions. Improvement could also be seen in objective function value
(OFV) and in simulation based diagnostics. In the real datasets, significant model improvement based on
OFV could be seen in 22, 18, and 22 out of the 30 models for the three transformations respectively.
Conclusion. Transformations with estimated shape parameters are a promising approach to relax the
often erroneous assumption of a known shape of the parameter distribution. They offer a simple and
straightforward way of handling and characterizing parameter distributions.

KEY WORDS: estimation; normality assumption; parameter distributions; population modeling;
transformations.

INTRODUCTION

In analysis of repeated measures data from clinical trials,
parametric population (nonlinear mixed effects) modeling
methods are often used. In these methods, the shapes of the
distributions of parameter values in the population are
generally assumed known, whereas the magnitudes of varia-
bility are estimated as model parameters. Three distributions
are commonly used to describe parameters: first, the normal
distribution as the identity transformation of the underlying
random effects variable, η, which is a zero mean variable with
estimated variance ω2; second, the lognormal distribution,
which often is used for parameters that are bounded to be
non-negative; and third, logit transformations, which are
often used for parameters that have theoretical upper and
lower bounds, for example fractions.

However, the assumptions made regarding distribution
shapes may not always hold. The distributions may deviate
from assumed shapes for a number of reasons. Polymorphisms
in metabolic enzymes may give rise to deviations from
lognormality of the clearance distribution. Physiological
boundaries may limit many parameters to display the full
range of values predicted by theoretical distributions. Distri-
bution shapes may also be influenced by study design, e.g.

exclusion criteria in screening for a clinical trial that excludes
subjects with too low a baseline value for some biomarker
creates a truncated distribution. In these cases, when random
effects distributions are skewed, broad, narrow, or heavily
tailed, an approach to assess this is needed. The most common
way of relaxing the assumption of a known distribution is to
use nonparametric estimation methods. These methods esti-
mate the entire probability distributions defined at a number of
parameter values equal to the number of individuals in the
datasets, completely relaxing distribution assumptions. The
nonparametric methods have some drawbacks though: model
building, model evaluation, and model utilization techniques
are less well developed compared to parametric methods, and
software are less accessible and versatile.

A related way to address complex distributions is through
mixturemodels, where the full parametric distribution is assumed
to be the sum of parametric distributions from a number of
subpopulations, each with its own distribution characteristics.
Mixture models take an intermediate position between paramet-
ric and nonparametric methods. To date, they have mainly been
used when there is somemechanistic reason to believe that there
are existing, distinctly different subpopulations.

Another way of handling non-standard distributions is to
use a transformation function where “shape” parameters of
the transformation are estimated along with the rest of the
model parameters. These estimated distributions do not fully
relax the assumptions on the distributions but allow a wider
range of distributions to be adequately described. Further,
despite being named “semiparametric” (1), they still retain the
advantages of parametric, over nonparametric, methods. The
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first semiparametric transformation was developed and imple-
mented in the NLMIX software by Davidian and Gallant in
1993 (2). This method uses polynomials as transformation
functions. Another developed method uses spline functions
(1,3). Neither the polynomial nor the spline transformations
appear to have been used in published papers outside the
citations above. Likely reasons for this are instability, complex
implementation, and lack of supported software.

In this work we will focus on other semiparametric
transformations that are easy to implement in existing
software. Our aims are as follows:

(i) By simulation and estimation investigate the trans-
formations’ ability to better describe an underlying
distribution by estimating shape parameters in the
transformations.

(ii) Investigate the possibility of improving the model fit
to data using these new transformations on already
developed models based on real data.

METHODS AND MATERIALS

Transformations

The semiparametric transformations in this work are
expected to be used in the following manner: first, the standard,
fixed transformation (e.g. identity, lognormal, or logit transfor-
mation) is applied to the parameter. Thereafter, the random
effects parameter, ηi, in that fixed transformation is replaced by a
flexible transformation, ηi,transformed, where at least one param-
eter related to the shape of the transformation is estimated.
When selecting transformation functions, three features were
sought: (i) ability to take on the identity transformation
(ηi,transformed taking on a normal distribution), allowing the need
for these transformations to be tested by the likelihood ratio test;
(ii) ability to facilitate the interpretation of typical individual
parameters by assuring that ηi=0 will result in ηi,transformed=0;
and (iii) ability to retain, approximately, the correlation structure
among random effects by assuring that the rank orders of ηi and
ηi,transformed are the same. This means that if ηi is ordered from
lowest to highest, ηi +1 > ηi, this will also be true post
transformation, ηi,transformed +1 > ηi,transformed. By ensuring this
outcome, the implantation of a transformation should not to any
large extent affect any estimate of the correlations between
random effects.

Three transformations were investigated: logit, box-cox,
and heavy-tailed (HT).

(i) The logit transformation (Eq. 1) uses two estimated
shape parameters to transform a normal distribution
into a potentially left or right skewed distribution or a
bimodal one, see Fig. 1. The parameter values need
to have boundaries, θ1 needs to be between 0 and 1,
and θ2 needs to be a positive value. θ1 governs the
skewness of the distribution and θ2 the width. When
ω is small, θ2 is large, and θ1 is 0.5, the logit
transformation approaches the identity transforma-
tion, resulting in a normal distribution of ηi,transformed.
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(ii) The box-cox transformation (Eq. 2) uses one param-
eter to transform a normal distribution into a left or
right skewed distribution. The parameter needs no
boundaries, but the transformation function is not
defined at θ1=0. As θ1→0 the box-cox transforma-
tion approaches the identity transformation.

�i Transformed ¼
e�ið Þ�1 � 1

� �

�1
ð2Þ

(iii) The heavy tailed transformation needs one param-
eter that determines the distributions shape (Eq. 3).
This transformation can, as the name implies, create
distributions that are more heavily tailed than the
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Fig. 1. Examples of a normal distribution transformed by the different transformations. The shape
parameter values used to create the distributions and the standard deviation of the original distribution are
indicated.

Table I. Mixtures Used to Simulate Skewed Distribution

Prob. Typical value (L/h) Variance

0.4 20 0.0256
0.3 30 0.1089
0.2 40 0.25
0.1 50 0.36
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normal distribution, but can also create a symmetric
bimodal distribution. For η=0, this function is not
defined at θ1=0, and as θ1 →0 the HT transforma-
tion also approaches the identity transformation.
The parameter needs no boundary but one could

restrict it to a positive value to get only tailed
distributions, not bimodal.

�i Transformed ¼ �i � �ijj �1 ð3Þ
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Fig. 2. The distribution of clearance that was used to simulate the datasets (solid line). The
dotted distributions are the four sub-distributions that make up the total distribution.
Vertical lines are the median of the true (solid) and an example of an estimated lognormal
distribution (dashed).

Table II. The Models in Which the Distribution Transformations were Implemented

Model No. (compound) No. ID No. Obs. Administration Disposition/Description No. ETAs Reference

PK1—Levosimedan 24 359 IVb 2-comp. 3 (8)
PK2—Antibody ATM-027 14 413 IV 2-comp. 5 (9)
PK3—Cladribine 161 488 IV/POa/SC 3-comp. 5 (10)
PK4—Ximelagatran 596 3595 IV/PO 1-comp. 4 (11)
PK5—Antibody X 70 559 IV 2-comp. 4
PK6—Voriconazole 83 1274 IV/PO 2-comp. 3
PK7—Desmopressin 28 373 PO 1-comp. 3 (12)
PK8—Desmopressin 28 373 PO 1-comp. 5 (12)
PK9—Desmopressin 72 139 PO 1-comp. 3 (12)
PK10—Desmopressin 72 139 PO 1-comp. 5 (12)
PK11—Desmopressin 100 512 PO 1-comp. 4 (12)
PK12—Desmopressin 100 512 PO 1-comp. 5 (12)
PK13—Moxonidine 74 1022 PO 1-comp. 4 (13)
PK14—Moxonidine 74 1022 PO 1-comp. 5 (13)
PK15—Glibenclamide 8 287 IV/PO 2-comp. 7 (14)
PK16—Glibenclamide 8 287 IV/PO 2-comp. 8 (14)
PK17—Pefloxacin 74 337 IV 1-comp. 2 (15)
PK18—Gefitinib 34 705 PO. 1-comp. 3 (16)
PK19—Tobramycin 97 322 IV 2-comp. 2 (17)
PK20—Prazosin 64 887 PO 1-comp 3 (18)
PK21—Pyrazinamide 227 3092 PO 1-comp. 3 (19)
PD1—Levodopa 19 851 PO Direct Imax. 4 (20)
PD2—Chemotherapies 636 3549 IV Semimechanistic 4 (21)
PD3—Tesaglitazar 413 4035 PO Indirect effect, Emax 3 (22)
PD4—Tesaglitazar 413 4663 PO Mechanism based, built upon PD3 5 (22)
PD5—Cladribine 59 332 in vitro EMAX model 2 (23)
PD6—Moxonidine 97 1942 PO Imax. 3 (24)
PD7—Moxonidine 97 1944 PO Direct inhibitory Emax. 2 (24)
PD8—Digoxin 225 787 IV Linear effect 3 (25)
PD9—Tesaglitazar 94 1337 PO 1-comp conc dependent elim. 5 (26)

a PO: Per oral
b IV: Intravenous
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Simulations example

In these simulations, the distribution of interindividual
random effects for clearance was simulated using a mixture of
four sub-distributions with varying variances, see Table I. The
random effects were transformed with a fixed exponential
transformation. The distributions were chosen so that the end
result was a skewed unimodal distribution (see Fig. 2). A
one-compartment disposition first order absorption and
elimination model was used to simulate 100 datasets of sparse
data with 25 individuals with 3 or 7 observations each, 100
datasets with 50 individuals with 3 observations each, and 100
datasets of richer data with 500 individuals with 7 observa-
tions each. Ka and volume of distribution were set to have
typical values of 1 h−1 and 250 L, respectively, both with an
interindividual variability of 30%. To the datasets were then
fitted models that included a lognormal distribution model
without or with each of the three transformations with
estimable shape parameters. The true mixture model was
also fitted to the datasets for comparison. The estimated
parameter distributions for all models were compared to the
simulated distribution by calculating the relative error from
the parameter values at the 10, 20, 30, 40, 50, 60, 70, 80, and
90th percentiles (see Fig. 2 and Eq. 4). The difference in
objective function values (ΔOFV) between models with and
without flexible transformations was also calculated for
each model and dataset. The ΔOFV is expected to be
approximately chi-square distributed, with degrees of
freedom equal to the number of estimated shape parameters
of the flexible transformation, and can be used in the
likelihood ratio test for hypothesis tests. The objective

function value (OFV) is equal to minus 2 times the log
likelihood of the data given the parameters. The cut-off
values used for inclusion of a transformation were 3.84 for
one parameter transformations and 5.99 for the two
parameter transformations. Wälhby et al. has shown that the
type I error rates and cut-off values for the likelihood ratio
test under certain conditions do not follow the χ2

distribution
(4,5). Therefore, the type I error rates and cut-off values for
significant inclusion for the shape parameters were evaluated
and found to concur with the nominal values. (Appendix I).

The simulation properties of one model with a fixed
lognormal parameter distribution and one where an estimat-
ed box-cox transformation was used was also illustrated by
performing visual predictive checks (VPC). 1000 dataset were
simulated using a model estimated with a standard lognormal
distribution, and 1000 datasets were simulated using an
estimated box-cox transformed distribution. This simulated
data was used to construct 95% confidence intervals for the
2.5 and 97.5 percentiles as well the median. These confidence
intervals could then be plotted together with the observed 2.5,
50, and 97.5 percentiles. This was done with a model fitted to
a dataset with 500 individuals and 7 observations.

Used for these calculations was R 2.4.0 or higher; the
NONMEM version used was NONMEM VI (Iconus, Hano-
ver, MD). The programs PsN (psn.sf.net) and Xpose (xpose.
sf.net) were used to perform the VPCs (6,7).

RPE ¼ Ptrue�Pestimated
Ptrue

ð4Þ

Relative percentile error and difference in OFV, 25 individuals, 3 observations per individual
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Fig. 3. The relative errors of the investigated percentiles and the differences in OFV between fixed lognormal distribution (Normal) and the
other models for the rich data with 25 individuals and 3 observations per individual.
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Real Models Examples

30 population models were evaluated using the three
different transformations of the Gaussian distribution. The

models evaluated had a wide range of number of individuals
and observations, from sparse to rich data (2–45 observations
per subject). Both PK and PD models were represented
among these models. The models are summarized in Table II.

Relative percentile error and difference in OFV, 50 individuals, 3 observations per individual
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Fig. 5. The relative errors of the investigated percentiles and the differences in OFV between normal distribution and transformed ones. This is
from the data with 50 individuals and 3 observations per individual.

Relative percentile error and difference in OFV, 25 individuals, 7 observations per individual
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Fig. 4. The relative errors of the investigated percentiles and the differences in OFV between normal distribution and transformed ones. This is
from the data with 25 individuals and 7 observations per individual.
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For the purpose of clarity, the models are hereafter identified
with numbers rather than by names; references are indicated
if available. The transformations were added to one ETA-
distribution at a time, and, if the inclusion was found to be
significant (p<0.05) based on the likelihood ratio test, the
transformation was included on additional parameters within
the same model. The three different transformations were
tested separately and were not applied to the same model
simultaneously.

RESULTS

Simulations Example

In the simulation study, the inclusion of an estimated
transformation that allows a skewed distribution reduced the
biases at the percentiles investigated compared to the fixed
exponential transformation, both with rich and sparse data
(Figs. 3, 4, 5 and 6). Compared to the true model, the logit
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Fig. 7. Visual predictive checks for a misspecified lognormal clearance distribution (left) and after inclusion of a box-cox
transformation with estimated shape parameter (right). 95 percentiles and median of observations are compared to the 95%
confidence intervals of simulated 95% prediction intervals (PI) and median.

Relative percentile error and difference in OFV, 500 individuals, 7 observations per individual
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transformation performs worse under the more information
rich circumstance but better when data is sparse. Testing the
models’ simulation performances for an individual data set
using VPCs showed that a misspecification of the parameter
distribution by using a fixed lognormal distribution leads to a
visibly poorer agreement with observations compared to a
model based on box-cox transformations (Fig. 7). Including
a transformation that can adapt to the skewed distribution
corrected for this over-prediction. In these examples the
stability was high for the standard lognormal, logit, box-cox,
and HT transformations when data was rich, with 100, 98,
100, and 97% successful minimizations, respectively. For the

mixture model 89% minimized successfully. When data was
sparser the corresponding values were 98, 92, 97, 95, and
92%.

Real Models Examples

When the transformations were implemented into
existing models, a significant drop in OFV was seen in
22, 18, and 22 of the models for logit, box-cox, and HTT,
respectively (Tables III, IV, and V and Figs. 8 and 9). The
largest drops in OFV could be seen when transforming
distributions of inter-individual random effects on the
residual error (ETA-on-EPS) with the transformations
allowing skewed distributions. For the logit transformation
14 of 35 transformed parameters the estimated variance
will yield a transformed distribution with a distinct bimodal
shape. 13 of the HT transformed parameters had negative
shape parameters, i.e. bimodality, and 18 had positive
values. Parameter distributions were about as often left
skewed as right skewed.

Table IV. Box-cox Transformation Resulting in Significant (p<0.05)
Improvement of Models for Real Data. Where Several Parameters
are Transformed in the Same Model, ΔOFV is for Adding the
Additional Parameter. Parameter Estimates are from the Final Model
with all Significant Transformations

Model No. ΔOFV Parameter(s) Θ1 ω2

PK2 −9.4 BASEb 7 0.074
PK3 −23.5 CL −1.03 0.33
PK4 −17.0 Ka −0.74 0.96
PK5 −6.7 CL −1.11 0.15

−13.8 V2 −3.76 0.070
PK6 −18.4 F −0.72 0.42
PK7 −4.9 V −0.66 0.26
PK9 −13.1 CL −0.65 0.21
PK10 −12.1 CL −1.34 0.16
PK12 −4.0a Ka −0.48 0.94
PK13 −35.9 Ka 0.77 2.45
PK18 −4.7 CL 0.66 0.24
PD1 −48.3 Ke 0.12 0.24
PD2 −19.7 MTTc −2.18 0.016

−17.2 SLd −0.65 0.13
−13.0 GAMe 3.37 0.017

PD3 −22.6 BASE 1.85 0.018
−9.1 PLACf −0.45 1.04

−75.7 RVg 2.97 0.072
PD4 −30.3 RV1 −1.11 0.13

−68.1 RV2 −0.12 0.039
PD5 −6.4 EMAX 3.81 2.3

−19.6 BASE 0.25 0.025
PD7 −17.5 BASE −3.57 0.014
PD8i −27.2 BASTh −0.68 22.6

aDrop might be borderline significant given number of individuals
and/or empirical cut-off values

bBASE: Baseline
cMTT; Mean transit time
d SL: Slope
eGAM:Hill factor
f PLAC: Placebo
gRV: Residual variability
hBAST: Time varying baseline
iThis model is omitted in Figs. 8 and 9

Table III. Logit Transformation Resulting in Significant (p<0.05)
Improvement of Models for Real Data. Where Several Parameters
are Transformed in the Same Model, ΔOFV is for Adding the
Additional Parameter. Parameter Estimates are from the Final Model
with all Significant Transformations

Model
No. ΔOFV Parameter(s) Θ1 Θ2 ω2

PK1 −13.8 CL 0.37 0.832 3.01
PK2 −17.5 BASEb 0.0033 2.57 46.9
PK3 −23.4 CL 0.99 92.1 0.374

−13.0 V3 0.99 0.789 84.3
PK4 −16.9 Ka 0.99 269 0.536
PK5 −6.8a CL 0.99 179 0.191

−13.8 V2 0.94 1.78 4.61
PK6 −12.5 CL 0.86 7.48 0.266

−20.3 Km 0.0020 399 5.82
−18.1 F 0.93 18.3 0.365

PK7 −6.6a Ka 0.64 3.6 4.85
PK9 −8.3 V 0.49 2.5 1.39
PK10 −6.0a Ka 0.77 6.02 0.26
PK13 −26.6 Ka: 0.011 8.25 9.17

−14.0 IOVc Ka 0.013 189 0.717
PK15 −7.7a V2 0.96 0.37 26.2
PK16 −7.6a V2 0.96 0.363 26.1

−8.3a MTTd 0.4 0.634 39.6
PK18 −6.2a CL 0.24 3.45 0.804
PK20 −9.5 Ka 0.005 321 1.43
PK21 −7.0 V 0.46 1.73 0.117
PD1 −53.9 EC50 0.85 0.761 4.22
PD2 −19.7 MTT 0.95 8.89 0.0861

−17.2 SLe 0.91 17 0.0729
PD3 −38.0 BASE 0.36 0.607 1.3

−15.0 PLACf 0.33 2.21 0.572
−23.7 EC50 0.91 17.4 4.79
−79.5 RVg 0.15 1.07 5.13

PD4 −94.9 RV1 0.045 1.1 11.5
−144.3 RV2 0.041 1.04 5.05

PD5 −6.7a EMAX 0.021 195 0.147
−22.1 BASE 0.21 1.05 1.17

PD7 −17.5 BASE 0.98 15.2 0.198
−16.4 BASE 0.73 5.13 34.1

PD8 −26.4 BASTh 0.69 1.09 0.691

aDrop might be borderline significant given number of individuals
and/or empirical cut-off values

bBASE: Baseline
c IOV: Inter occasion variability
dMTT; Mean transit time
e SL: Slope
f PLAC: Placebo
gRV: Residual variability
hBAST: Time varying baseline

2180 Petersson, Hanze, Savic and Karlsson



DISCUSSION

Implementation of one of the transformations evaluated
in this paper is an easy way to allow deviations from the
standard, fixed parameter distributions that are traditionally
used in parametric mixed effects population modeling. The
implementation of the transformations into the NONMEM
code is straightforward. Improvement of the model’s fit to
real data could be seen in about two thirds of the models for
each of the three transformations. Considering individual
parameters, there were 112 parameter distributions in the 30
models; 35, 25, and 33 could be improved with the logit, box-
cox, and HT transformation.

Often both transformations that allow a skewed distri-
bution (logit and box-cox) show significant drops in OFV for

the same models and same parameters, and the estimated
distributions had similar shape. This implies that the distribu-
tions estimated are closer to the true ones than the fixed
transformations. The estimated distribution shapes of models
with few individuals should be interpreted with caution. For
such small data sets the likelihood ratio test using nominal cut-
off values may not always be correct (see Appendix) resulting
in too frequent selection of the more complex model.

The simulated skewed distribution was better approxi-
mated with a box-cox or logit transformation that could quite
adequately adapt to the deviation from lognormality. As
expected the HT transformation, which is only able to
transform into symmetrically heavy-tailed distributions, per-
formed no better than the identity transformation. Box-cox
and logit transformations and behaves reasonably well
compared to the true mixture model considering that they
use 5 and 4 fixed parameters and 3 random parameters less
than the mixture model. The mixtures estimated by the
mixture model generally showed little resemblance with the
ones simulated, especially when data was sparse. Model
stability was also lower and runtimes longer for the mixtures.
Thus is the, in this case, more mechanistic mixture model not
well suited to explain the phenomenon of a unimodal, skewed
distribution. The more empirical transformation approach
appears more appropriate. When dealing with truly bimodal
or multimodal distributions, or when prior parameter infor-
mation exists, the mixture model would be preferred even if
two of the flexible transformations are able to create bimodal
distributions. The mean relative errors at the investigated
percentiles are zero already at 25 individuals with rich data
for the logit transformation, but with sparse data there is
some bias. Further investigations (results not shown) show
that this is the case with 7 observations and 50 individuals too.
This implies that to correctly characterize the distribution
there needs to be sufficient information on the individual etas,
otherwise the eta distribution shape probably becomes
distorted or there is shrinkage. Still, even when individual
data is sparse, the errors look better than using the normal,
and the drops in OFV indicate that the estimated distributions
are offering a better fit than the standard lognormal. The
improvement in simulation properties seen in the VPC may
seem small, but the distribution used to simulate did not
deviate as much from lognormality as some distributions
estimated from real data. Concerning simulation studies, the
logit transformation offers a nice feature. In these studies,
truncated parameter distributions are sometimes used. With
the estimated logit transformation the parameter distribution
is automatically truncated at −θ1*θ2 (lower bound) and (1- θ1)
*θ2 (upper bound). For the other transformations, no such
automatic truncation occurs.

Based on these results it appears as if PD models
improve more by introducing a transformation that allows
the distributions to be skewed as the largest drops in OFV
can be seen with box-cox and logit transformations. A larger
number of PK models, on the other hand, seem to benefit
more from the transformation that allows a heavy tailed
distribution. Also, baseline parameters often appear to
benefit from transformation inclusion in the PD models. This
could, for example, be due to parameter distributions being
truncated by study inclusion criteria. For PK models, no
parameter stands out in the same way.

Table V. Heavy Tailed Transformation Resulting in Significant (p<
0.05) Improvement of Models for Real Data. Where Several
Parameters are Transformed in the Same Model, ΔOFV is for
Adding the Additional Parameter. Parameter Estimates are from
the Final Model with all Significant Transformations

Model No. ΔOFV Parameter(s) Θ1 ω2

PK2 −8.5 BASEb 0.67 0.80
−11.5 CL 0.42 0.46
−5.0a V 0.28 0.69

PK3 −12.8 V3 1.36 0.50
PK4 −15.8 Ka −0.33 1.32

−42.8 RVc 0.29 0.051
PK5 −4.6a CL 0.43 0.30

−5.6 V2 0.30 0.27
PK6 −35.2 Km −0.57 6.10

−7.2 RV −0.25 0.14
PK7 −9.4 Ka −0.28 4.51
PK8 −13.1 CL 0.57 0.33
PK9 −10.1 CL 0.25 0.27
PK12 −10.0 Nd 0.58 2.90
PK15 −9.3 Ke 0.93 0.097
PK16 −7.4a Ke −0.66 0.13

−9.1 V2 1.30 0.00015
−4.8a MTTe −0.61 0.0014

PK17 −4.7a CL 0.93 0.40
−7.0 V 0.31 0.23

PK18 −6.48 V −0.31 0.22
PK19 −47.0 CL −0.066 0.079
PK21 −21.6 V 0.21 0.038
PD1 −5.2a Ke −0.18 1.09
PD2 −4.6a BASE 0.13 0.086
PD3 −8.4 BASE −0.32 0.0096

−10.1 EC50 −0.17 0.47
−18.8 PLACf −0.32 0.76

PD4 −4.4a KINg −0.25 0.0076
−11.3 RV 0.10 0.067

PD5 −5.9 EMAX 0.41 1.8
PD6 −24.2 CL −0.32 1
PD9 −12.9 V 0.41 0.12

aDrop might be borderline significant given number of individuals
and/or empirical cut-off values

bBASE: Baseline
cRV: Residual variability
dN; Number of transit comp.
eMTT:mean transit time
f PLAC: Placebo
gKIN: Red blood cell release

2181Semiparametric Distributions With Estimated Shape Parameters



Even if runtimes were not directly investigated in this
work, we did not notice any significant effect when imple-
menting these estimated transformations. One should also
note that in the simulation example the estimated logit
transformation on one occasion and the mixture model on
three occasions ended up in local minima, here seen as
dOFVs higher than 0 (Figs. 3, 4, 5 and 6).

There are tendencies that models with larger numbers of
individuals have larger decreases in OFV with estimated
transformations. This suggests that most individuals benefit
from the new distributions, not only outlying individuals.

Some tests made (results not shown) where individual OFVs
were calculated support this statement (27). More individuals
give better defined distributions and give more precise
estimates of the shape parameters.

That a significant decrease can be seen for a parameter
both with transformations that allow skewed distributions and
with the HT transformation, which is symmetrical, might
seem counterintuitive, but the subsequent fixed exponential
transformation can transform these HT distributions into
quite skewed distributions. This could also explain some
models where the HT shape parameters were negative, but
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there were no tendencies in the empirical bayes estimates that
the distribution was bimodal. The combination of HT and
exponential transformations creates a unimodal distribution
that resembles the true one significantly better than the
lognormal. The HT transformation could be applied to either
only positive or only negative ηs to investigate if the shape is
truly symmetrically heavy tailed or only one sided.

The shapes of underlying parameter distributions are not
easy to assess using standard goodness-of-fit diagnostics, and
neither are the misspecifications of the applied distributions
easy to diagnose. Empirical bayes estimates are often not
informative, due to η-shrinkage, unless all subjects have rich
information about the parameter in question. These trans-
formations can therefore be used as a tool to investigate
parameter distribution assumptions in the final stage of model
development. A lack of improvement when using estimated
transformations would be a strong indication that the selected
fixed transformations are appropriate. When used for this
purpose, these transformations would be a useful complement
to the already existing nonparametric methods which have
shown to be powerful for detecting non-standard shapes. For
describing such distributions, however, these transformations
offer several advantages compared to nonparametric methods
in that all the tools available for model building, evaluation,
and utilization that apply to parametric methods also apply to
these models. It seems suitable to try these transformations
subsequent to or simultaneously to covariate modeling. In
this study, we did, for illustrative purposes, not mix different
types of transformations within one model. For other
applications, the best model may well be obtained with a
mixture of transformation types, logit, box-cox, and/or HT. In
the case where more than one transformation type falls out as
significant for the same parameter, OFV and simulation
properties should guide model selection.

The transformations may induce a change in variability,
such that the estimate of parameter variability is different
after introduction of a semiparametric transformation. The
SDs of the estimated transformed distributions compared to
the estimated SDs using the standard lognormal distribution
are shown in Fig. 10. It appears as the SD of the estimated
distributions, lognormal or transformed, are quite similar in
the majority of cases. This shows that whether the estimated

shape of the distribution is correct or not, using the trans-
formations does not to any large extent change the estimation
of the variability. Stated differently, this indicates that even in
cases when standard parametric modeling fails to appropri-
ately recognize the shape of a parameter distribution, the
estimated magnitude of variability is generally adequate. In
the cases where there is a larger difference in variability
between the lognormal and the transformed distributions,
the estimated shape parameters deviate markedly from the
unity transformation values, or the variances for either the
lognormal or transformed distributions are large.

The transformations may make it harder to assess the
magnitude of parameter variability directly from parameter
estimates. Fortunately, there are approximations that may be
suitable for an assessment. For the logit transformation, SD
(ηi,transformed) can be approximated by multiplying the estimated
ωwith (1-θ1)θ1θ2. This approximation seems to be reasonable in
the ranges ofω found in the models based on real data (Fig. 11).
For the box-cox transformation, ω and SD(ηi,transformed) are
approximately equal whenever the former is small. For example,
SD(ηi,transformed) will be 0.319 when θ1 is 1 or −1 and ω is 0.3.
However, this approximation will be less appropriate as
estimated ω increases and θ1 is more different from zero. For
the heavy-tailed transformations ω and SD(ηi,transformed) are
approximately equal whenever θ1 is in the range −0.5 to 0.5; it
becomes less appropriate with ω larger than 1, and negative θ1
generally means a worse approximation.

The fact that for the box-cox and the logit transforma-
tion, the transformation only approaches the identity trans-
formation as the shape parameters approaches their
corresponding values tells that the models are not truly
nested. However, there exist in the shape parameter space
values where the difference between ηi, and ηi,transformed is so
small that there is no change in OFV. This gives the
transformations the property of being practically nested from
a numerical point of view rather than strictly analytically. The
behavior of the transformations when put trough the likeli-
hood ratio test also implies that they can be assumed to be
nested models as the statistic follow a χ2-distribution. This
assumption would break down as the number of individuals
approaches infinity. Even if the models are not strictly
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mathematically nested the cut-off values can be used as
guides for statistical inclusion. If one would consider the
models not to be nested, the Akaike information criterion
would be an appropriate tool to distinguish the better model

In conclusion, the shapes of parameter distributions can
often be better approximated by flexible transformations with
estimated shape parameters. Implementation into real models
caused significant drops in OFV in two thirds of the models,
implying that in model building, more often than not, the
parameter distribution assumptions are violated.
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APPENDIX I. ASSESSMENT OF THE TYPE I ERROR
RATES

When building models using maximum likelihood as in
NONMEM, the likelihood ratio test is often used to test if the
inclusion of a new parameter that is to be estimated into the
model is statistically significant. Under asymptotic conditions
the likelihood ratio statistic is χ2 distributed, which implies
that a drop in OFV needs to be larger than 3.84 for an
inclusion of a new parameter, corresponding to one degree of
freedom, to be statistically significant at p<0.05 (28). Monte
Carlo simulations were performed to investigate if the
likelihood ratio statististic of the shape parameters estimated
in these transformations are χ2 distributed with the same
number of degrees of freedom as additional parameters
estimated, which would be in accordance with statistical
theory. This kind of investigation would also test the
robustness of the likelihood ratio test as it has been done
with other model misspecifications (4,5).

Datasets were simulated from a model with a constant
rate infusion at steady state, thus parameterized only with one
structural parameter; CL, modeled with interindividual vari-
ability, this simple model was chosen for runtime reasons.
Simulations were performed with transformations included,
but the shape parameters set to values that would give no
change in the shape of the distributions. These values were
0.00001 for box-cox, 0.5 and 4 for the two parameters of the
logit transformation, and 0 for HTT. The simulation settings
were altered and combined with respect to number of
individuals and number of observations. The number of
individuals ranged between 25 and 500, and observations
ranged between 2 and 19. For each combination, 1000
datasets were simulated. The datasets were then estimated

both with the full model with transformation as well as with
the reduced model, i.e. the standard lognormal distribution.
The OFV values from the estimation with both models were
then compared for each simulated dataset, and the drop in
OFV which produced an error rate of 5% was calculated.
Expected values would be 3.84 for box-cox and HTT and 5.99
for logit because of its two parameters.

The results of the assessment of the type I error rates
through simulations showed that the cut-off values for
inclusion of a transformation of a parameter distribution
were drops in OFV of 7, 4, and 5 for the logit, box-cox, and
HT transformations, respectively. These values do not differ
to any large extent from the nominal values of 3.84 and 5.99.
These error rates were considered to be stable from 50
individuals and up. At lower numbers of individuals (25) the
values are slightly elevated (see Table VI, which shows the
average cut-off values of from varying the number of
observations per individual).

APPENDIX II EXAMPLES OF NM-TRAN CODE

Logit transformation

TVCL=THETA(1)
LGPAR1 = THETA(2)
LGPAR1 = THETA(3)
PHI = LOG(LGPAR1/(1-LGPAR1))
PAR1 = EXP(PHI+ETA(1))
ETATR = (PAR1/(1+PAR1)-TVTH)*LGPAR2
CL=TVCL*EXP(ETATR)

Box-Cox transformation

TVCL=THETA(1)
BXPAR=THETA(2)
PHI = EXP(ETA(1))
ETATR = (PHI**BXPAR-1)/BXPAR
CL=TVCL*EXP(ETATR)

Heavy tailed transformation

TVCL=THETA(1)
HTPAR=THETA(2)
ETATR=ETA(1)*SQRT(ETA(1)*ETA(1))**HTPAR
CL=TVCL*EXP(ETATR)
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